An Inner-Outer Iteration for Computing PageRank

نویسندگان

  • David F. Gleich
  • Andrew P. Gray
  • Chen Greif
  • Tracy Lau
چکیده

We present a new iterative scheme for PageRank computation. The algorithm is applied to the linear system formulation of the problem, using inner-outer stationary iterations. It is simple, can be easily implemented and parallelized, and requires minimal storage overhead. Our convergence analysis shows that the algorithm is effective for a crude inner tolerance and is not sensitive to the choice of the parameters involved. The same idea can be used as a preconditioning technique for nonstationary schemes. Numerical examples featuring matrices of dimensions exceeding 100,000,000 in sequential and parallel environments demonstrate the merits of our technique. Our code is available online for viewing and testing, along with several large scale examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Inner/Outer Stationary Iteration for Computing PageRank

We present a stationary iterative scheme for PageRank computation. The algorithm is based on a linear system formulation of the problem, uses inner/outer iterations, and amounts to a simple preconditioning technique. It is simple, can be easily implemented and parallelized, and requires minimal storage overhead. Convergence analysis shows that the algorithm is effective for a crude inner tolera...

متن کامل

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

A Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation

Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...

متن کامل

On adaptively accelerated Arnoldi method for computing PageRank

A generalized refined Arnoldi method based on the weighted inner product is presented for computing PageRank. The properties of the generalized refined Arnoldi method were studied. To speed up the convergence performance for computing PageRank, we propose to change the weights adaptively where the weights are calculated based on the current residual corresponding to the approximate PageRank vec...

متن کامل

Models and Algorithms for Pagerank Sensitivity a Dissertation Submitted to the Institute of Computational and Mathematical Engineering and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

e PageRank model helps evaluate the relative importance of nodes in a large graph, such as the graph of links on the world wide web. An important piece of the PageRankmodel is the teleportation parameter α. We explore the interaction between α and PageRank through the lens of sensitivity analysis. Writing the PageRank vector as a function of α allows us to take a derivative, which is a simple s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2010